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A copy of these viewgraphs and additional notes is available at “http://bwb.lanl.gov/bwb.htm”.A copy of these viewgraphs and additional notes is available at “http://bwb.lanl.gov/bwb.htm”.
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DefinitionsDefinitions

•• “Something is “Something is object-orientedobject-oriented if it can be extended by if it can be extended by
composition of existing parts or by refinement of behaviors.composition of existing parts or by refinement of behaviors.
Changes in the original parts propagate, so that compositionsChanges in the original parts propagate, so that compositions
and refinements that reuse these parts change appropriately.”and refinements that reuse these parts change appropriately.”
[Goldberg][Goldberg]

•• An An objectobject has state, behavior, and identity.  “An  has state, behavior, and identity.  “An objectobject is is
characterized by a number of operations and a state whichcharacterized by a number of operations and a state which
remembers the effect of these operations.” [Jacobson]remembers the effect of these operations.” [Jacobson]

•• “A “A classclass represents a template for several objects and represents a template for several objects and
describes how these objects are structured internally.  Objectsdescribes how these objects are structured internally.  Objects
of the same class have the same definition both for theirof the same class have the same definition both for their
operations and for their information structures.” [Jacobson]operations and for their information structures.” [Jacobson]

•• “An “An instanceinstance is an object created from a class.  The class is an object created from a class.  The class
describes the (behavior and information) structure of thedescribes the (behavior and information) structure of the
instance, while the current state of the instance is defined by theinstance, while the current state of the instance is defined by the
operations performed on the instance.” [Jacobson]operations performed on the instance.” [Jacobson]
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Key FeaturesKey Features

•• abstractionabstraction
–– “An “An abstractionabstraction denotes the essential characteristics of an denotes the essential characteristics of an

object that distinguish it from all other kinds of objects and thusobject that distinguish it from all other kinds of objects and thus
provide crisply defined conceptual boundaries, relative to theprovide crisply defined conceptual boundaries, relative to the
perspective of the viewer.” [Booch]perspective of the viewer.” [Booch]

–– allows building models which map to the real worldallows building models which map to the real world

•• encapsulationencapsulation
–– ““EncapsulationEncapsulation is the process of compartmentalizing the is the process of compartmentalizing the

elements of an abstraction that constitute its structure andelements of an abstraction that constitute its structure and
behavior; encapsulation serves to separate the contractualbehavior; encapsulation serves to separate the contractual
interface of an abstraction and its implementation.” [Booch]interface of an abstraction and its implementation.” [Booch]

–– hides implementation detailshides implementation details
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Key Features (continued)Key Features (continued)

•• inheritanceinheritance
–– “If class B “If class B inheritsinherits class A, then both the operations and the class A, then both the operations and the

information structure described in class A will become part ofinformation structure described in class A will become part of
class B.” [Jacobson]class B.” [Jacobson]

–– enables and organizes code reuseenables and organizes code reuse

•• polymorphismpolymorphism
–– ““PolymorphismPolymorphism means that the sender of a stimulus does not means that the sender of a stimulus does not

need to know the receiving instance’s class.  The receivingneed to know the receiving instance’s class.  The receiving
instance can belong to an arbitrary class.” [Jacobson]instance can belong to an arbitrary class.” [Jacobson]

–– reduces software maintenance and increases extensibility.reduces software maintenance and increases extensibility.
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ExampleExample
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Usefulness of Object-OrientationUsefulness of Object-Orientation

•• issues addressedissues addressed
–– scheduling: meeting delivery datesscheduling: meeting delivery dates

–– complexity: modeling complex applicationscomplexity: modeling complex applications
–– size: managing interdependencies in large systemssize: managing interdependencies in large systems

–– compatibility: making different chunks of code inter-operatecompatibility: making different chunks of code inter-operate

•• benefitsbenefits
–– reuse of codereuse of code

–– reduced code sizereduced code size
–– increased productivityincreased productivity

–– lower defect ratelower defect rate
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Successful ProjectsSuccessful Projects

•• “The five habits of a successful object-oriented project include:“The five habits of a successful object-oriented project include:
–– “A ruthless focus on the development of a system that provides“A ruthless focus on the development of a system that provides

a well-understood collection of essential minimala well-understood collection of essential minimal
characteristics.characteristics.

–– “The existence of a culture that is centered on results,“The existence of a culture that is centered on results,
encourages communication, and yet is not afraid to fail.encourages communication, and yet is not afraid to fail.

–– “The effective use of object-oriented modeling.“The effective use of object-oriented modeling.
–– “The existence of a strong architectural vision.“The existence of a strong architectural vision.
–– “The application of a well-managed iterative and incremental“The application of a well-managed iterative and incremental

development life cycle.” [development life cycle.” [BoochBooch]]
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Successful Projects (continued)Successful Projects (continued)

•• “Why do certain object-oriented projects succeed?  Most often, it“Why do certain object-oriented projects succeed?  Most often, it
is because:is because:
–– “An object-oriented model of the problem and its solution“An object-oriented model of the problem and its solution

encourages the creation of a common vocabulary between theencourages the creation of a common vocabulary between the
end users of a system and its developers, thus creating aend users of a system and its developers, thus creating a
shared understanding of the problem being solved.shared understanding of the problem being solved.

–– “The use of continuous integration creates opportunities to“The use of continuous integration creates opportunities to
recognize risk early and make incremental corrections withoutrecognize risk early and make incremental corrections without
destabilizing the entire development effort.destabilizing the entire development effort.

–– “An object-oriented architecture provides a clear separation of“An object-oriented architecture provides a clear separation of
concerns among the disparate elements of a system, creatingconcerns among the disparate elements of a system, creating
firewalls that prevent a change in one part of the system fromfirewalls that prevent a change in one part of the system from
rending the fabric of the entire architecture.” [Booch]rending the fabric of the entire architecture.” [Booch]
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Development ProcessDevelopment Process

•• analysisanalysis
–– requirements definitionrequirements definition

–– domain  analysisdomain  analysis
–– use cases / scenariosuse cases / scenarios

•• designdesign
–– architectural designarchitectural design
–– class designclass design

•• codingcoding

•• quality assurancequality assurance
–– teststests

–– inspections and reviewsinspections and reviews
–– metricsmetrics
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Iterative Process Flow Chart [Kahn]Iterative Process Flow Chart [Kahn]
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TRANSIMS Development ProcessTRANSIMS Development Process
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Cost of Defect [McConnell]Cost of Defect [McConnell]
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AnalysisAnalysis

•• ““Object-oriented analysisObject-oriented analysis is a method of analysis that examines is a method of analysis that examines
requirements from the perspective of classes and objects foundrequirements from the perspective of classes and objects found
in the vocabulary of the problem domain.” [Booch]in the vocabulary of the problem domain.” [Booch]

•• ““Domain analysisDomain analysis attempts to understand the basic attempts to understand the basic
abstractions in a discipline.  The goal of domain analysis is toabstractions in a discipline.  The goal of domain analysis is to
determine a general domain model from which it is possible todetermine a general domain model from which it is possible to
develop multiple applications. . . .  The outcome of a domaindevelop multiple applications. . . .  The outcome of a domain
analysis is the identification of reuse opportunities acrossanalysis is the identification of reuse opportunities across
applications in a domain.” [Goldberg]applications in a domain.” [Goldberg]

•• Use cases are a tool for the Use cases are a tool for the definition of requirementsdefinition of requirements and the and the
analysis of the problem domainanalysis of the problem domain.  Requirements are.  Requirements are
generated both from the customer’s definition of the problemgenerated both from the customer’s definition of the problem
and results of analyzing the abstractions in the problem’sand results of analyzing the abstractions in the problem’s
domain.domain.
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DesignDesign

•• design processdesign process
–– “Identify the classes and objects at a given level of abstraction.“Identify the classes and objects at a given level of abstraction.

–– “Identify the semantics of these classes and objects.“Identify the semantics of these classes and objects.
–– “Identify the relationship among these classes and objects.“Identify the relationship among these classes and objects.

–– “Specify the interface and then the implementation of these“Specify the interface and then the implementation of these
classes and objects.” [Booch]classes and objects.” [Booch]

•• architectural design principlesarchitectural design principles
–– layeringlayering
–– modularitymodularity

–– use of frameworksuse of frameworks

•• class design principlesclass design principles
–– coupling/cohesioncoupling/cohesion

–– completenesscompleteness
–– patternspatterns

•• diagrammingdiagramming
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TRANSIMS ArchitectureTRANSIMS Architecture
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Example Class Diagram (from Graph Layout Tool)Example Class Diagram (from Graph Layout Tool)
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Programming LanguagesProgramming Languages

•• C++C++

•• SmalltalkSmalltalk

•• CLOSCLOS

•• JavaJava
•• EiffelEiffel

•• Objective CObjective C

•• SimulaSimula
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Programming Language Comparison [Goldberg]Programming Language Comparison [Goldberg]
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